

Jiayuan Liu

✉ jliu2@olin.edu

📞 +1-253-325-5880

🔗 <https://jiayuanliu.com>

👤 [jiayuan-liu-19513521b](#)

👤 [Chidunbo](#)

Education

Olin College of Engineering

B.S. in Electrical and Computer Engineering

Sept 2021 – May 2025

- GPA: 3.83/4.0

- Research Advisor: Prof. Andrea Cuadra

Research Experience

LLM Generative Tutor for Online Teaching

Student Researcher @ Olin Plai Lab

Needham, MA

May 2024 – Present

- Utilized TSCC online ESL class corpus data as a benchmark to evaluate and compare GPT-4o's ability to display empathy towards students versus human tutors.
- Investigated how varying levels of student personal information disclosure affect the chatbot tutor's responses.
- Enhanced the software system for interacting with the GPT-4o API, enabling conversation simulation and analysis to identify potential biases related to gender and racial groups.
- Evaluated quantitative metrics of simulated conversations between generative students and tutors using various statistical tests.
- Drafted a research paper detailing the methodology and findings of the experiment.

Batch Reverse Osmosis System Building

Student Researcher @ Olin Water Desalination Lab

Needham, MA

Oct 2021 – Dec 2023

- Integrated flowmeters, conductivity probes, and pressure sensors into a customized reverse osmosis (RO) apparatus to model and monitor water chemistry and mechanical characteristics in the desalination cycle.
- Automated batch reverse osmosis process using MATLAB-controlled Arduino and relays to control solenoid valves, and analyzed sensor data collected with DAQ.

Teaching Experience

Computer Science and Engineering Teacher

2025 Fall - Present

Menaul School

- Design and pilot the middle-school elective “AI Foundations: Creativity, Code, and Consequences” for grades 7–8, introducing core AI concepts and block-based programming.
- Teach two sections of AP Computer Science Principles (Beauty and Joy of Computing curriculum) and one section of AP Computer Science A (Java).
- Co-coach the Science Olympiad team; mentor projects in Robot Tour, Engineering CAD, and Circuit Lab.

Student Lecturer, Introduction to Sensors, Instrumentation, and Measurement (ISIM)

2025 Spring

Olin College of Engineering

- Taught first-year introductory circuit class to 50+ students twice a week, covering instrumentation design and hands-on circuit implementation.
- Led lab sessions focused on building and troubleshooting RC filters and op-amp-based signal conditioning circuits for sensor measurements, including humidity, temperature, and EKG.

Industry Experience

Water Treatment Chemical Detection and Preservation

Fort Myers, FL

Research and Development Intern @ Watts Water Technologies

May 2023 – Sept 2023

- Designed and conducted experiments to test a DPD preservation method on a chlorine colorimetry instrument (CLX).

- Designed and prototyped printed circuit boards (PCBs) to automate the detection process of PFAS (Per- and Polyfluoroalkyl Substances) in drinking water.

Skills

- **Programming Languages:** Python, Java, MATLAB, C++, Swift, HTML/CSS
- **Hardware Design:** KiCad, SPICE, Microcontroller Programming (STM32, Arduino, Raspberry Pi), VLSI, PCB Assembly
- **Design & Prototyping:** Figma, Adobe Illustrator, Adobe Photoshop, Animation Design, Unity, Phaser, SolidWorks, OnShape, 3D Printing, Laser Cutting

Projects

Course Project Design: Gesture-Based ML Sphero Controller

[Project Video ↗](#)

AI Foundation: Creativity, Code, and Consequences @ Menaul School

- Designed and implemented a web-based, gesture-controlled machine learning interface enabling students to control Sphero robots, emphasizing embodied interaction and playful learning.
- Developed a comparative final project in which students navigated a physical obstacle course using both rule-based programming and ML models trained with Teachable Machine.
- Facilitated structured post-project discussions analyzing trade-offs between traditional programming and ML approaches, including usability, reliability, and ethical implications of AI systems.

“Prism Pines”, Youth Gender Education Game

[Prism Pines ↗](#)

Olin PInT Group & OUT Maine

- Designed a 2D web-based educational RPG, “Prism Pines,” for children aged 9-13 to learn about gender identity, in collaboration with OUT Maine, an organization supporting LGBTQ+ youth.
- Conducted 10 in-depth interviews with users and volunteers to ensure diverse gender representation in the game.
- **Tools Used:** C#, Unity, Adobe Photoshop

“Cane Game”, Orientation and Mobility (O&M) Training Tool

[Cane Game ↗](#)

Project Guided by Prof. Paul Ruvolo

- Collaborated with a team of four to refine “Cane Game”, a research-based iOS app designed to gamify mobility skill practice for blind or visually impaired students (BVI) through music-based games.
- Developed individual student profile functionality in SwiftUI, enabling instructors to log in and access tailored student data.
- Conducted interviews with five Orientation & Mobility (O&M) instructors to gather feedback on visualizations of training data prototyped in Figma.
- Explored gameplay enhancements, such as introducing “pop-quiz” style counting, to promote greater student independence in cane use beyond reward-based engagement.
- **Tools Used:** SwiftUI, Figma

“Dancing Degas”, Music-to-Spiralgraph Translator

[Dancing Degas ↗](#)

Principles in Engineering Course Final Project

- Built an algorithm that detects various components of music (liveliness, danceability, energy, instrumentality, valence, loudness, mode, acousticness, and key) using the Spotify API, and used these parameter values in a geometric model of spirographs.
- Wrote Python scripts to generate G-code based on the coordinates of spirograph points and streamed the G-code to Grbl on an Arduino to control an x-y gantry and color wheel motors.

MOSFET Simulator for Microelectronics Learning Visualization

[MOSFET Simulator ↗](#)

Personal Project

- Assisted in designing a MOSFET circuit simulator that animates current and voltage changes across five basic circuit configurations, enhancing visualization for introductory microelectronics students.

ASL Immersive Classroom Product Proposal

Collaborative Design Course Final Project

- Conducted in-depth interviews with various ASL interpreters to understand the needs and values of the ASL community.
- Engaged in iterative co-design with ASL interpreters, resulting in a proposal for an ASL Immersion Classroom model, supported by visual and physical prototypes.
- **Tools Used:** Figma, laser cutter

“Brailldle”, Braille Translator Cell

MakeMIT Hackathon

Brailldle ↗

- Designed and prototyped a computer vision-based Braille translator in a 24-hour hackathon, aimed at helping new Braille learners translate visual text into physical information.
- **Tools Used:** Python(OpenCV) Arduino, servo motor

Awards and Scholarship

1st Place , 2022 MakeMIT Hackathon	\$600
1st Place , National MWLC Competition (Olin Water Desalination Lab) ↗	\$150,000
Recipient , Merit-Based Olin Tuition Scholarship (Annual)	\$30,000